Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Biosens Bioelectron ; 228: 115213, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2306423

RESUMO

Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Mycobacterium tuberculosis , Microfluídica/métodos , Testes de Sensibilidade Microbiana , Proteínas , Técnicas Analíticas Microfluídicas/métodos , Ensaios de Triagem em Larga Escala/métodos
2.
Biosensors (Basel) ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: covidwho-2215575

RESUMO

Worldwide infection disease due to SARS-CoV-2 is tremendously affecting our daily lives. High-throughput detection methods for nucleic acids are emergently desired. Here, we show high-sensitivity and high-throughput metasurface fluorescence biosensors that are applicable for nucleic acid targets. The all-dielectric metasurface biosensors comprise silicon-on-insulator nanorod array and have prominent electromagnetic resonances enhancing fluorescence emission. For proof-of-concept experiment on the metasurface biosensors, we have conducted fluorescence detection of single-strand oligoDNAs, which model the partial sequences of SARS-CoV-2 RNA indicated by national infection institutes, and succeeded in the high-throughput detection at low concentrations on the order of 100 amol/mL without any amplification technique. As a direct detection method, the metasurface fluorescence biosensors exhibit high performance.


Assuntos
Técnicas Biossensoriais/métodos , Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , Sensibilidade e Especificidade
3.
Antiviral Res ; 210: 105506, 2023 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2165061

RESUMO

Massive efforts on both vaccine development and antiviral research were launched to combat the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We contributed, amongst others, by the development of a high-throughput screening (HTS) antiviral assay against SARS-CoV-2 using a fully automated, high-containment robot system. Here, we describe the development of this novel, convenient and phenotypic dual-reporter virus-cell-based high-content imaging assay using the A549+hACE2+TMPRSS2_mCherry reporter lung carcinoma cell line and an ancestral SARS-CoV-2_Wuhan_mNeonGreen reporter virus. Briefly, by means of clonal selection, a host cell subclone was selected that (i) efficiently supports replication of the reporter virus with high expression, upon infection, of the NeonGreen fluorescent reporter protein, (ii) that is not affected by virus-induced cytopathogenic effects and, (iii) that expresses a strong fluorescent mCherry signal in the nucleus. The selected clone matched these criteria with an infection rate on average of 75% with limited cell death. The average (R)Z'-factors of the assay plates were all >0.8, which indicates a robust assay suitable for HTS purposes. A selection of reference compounds that inhibits SARS-CoV-2 replication in vitro were used to validate this novel dual-reporter assay and confirms the data reported in the literature. This assay is a convenient and powerful tool for HTS of large compound libraries against SARS-CoV-2.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/metabolismo , Ensaios de Triagem em Larga Escala/métodos , SARS-CoV-2 , Descoberta de Drogas , Replicação Viral
4.
Curr Med Chem ; 29(38): 5925-5948, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1910818

RESUMO

The COVID-19 outbreak caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to have high incidence and mortality rate globally. To meet the increasingly growing demand for new therapeutic drugs and vaccines, researchers are developing different diagnostic techniques focused on screening new drugs in clinical use, developing an antibody targeting a SARS-CoV-2 receptor, or interrupting infection/replication mechanisms of SARS-CoV-2. Although many prestigious research publications are addressing this subject, there is no open access platform where all experimental techniques for COVID-19 research can be seen as a whole. Many researchers have accelerated the development of in silico methods, high-throughput screening techniques, and in vitro assays. This development has played an important role in the emergence of improved, innovative strategies, including different antiviral drug development, new drug discovery protocols, combinations of approved drugs, and setting up new drug classes during the COVID-19 outbreak. Hence, the present review discusses the current literature on these modalities, including virtual in silico methods for instant ligand- and target-driven based techniques, nucleic acid amplification tests, and in vitro models based on sensitive cell cultures, tissue equivalents, organoids, and SARS-CoV-2 neutralization systems (lentiviral pseudotype, viral isolates, etc.). This pack of complementary tests informs researchers about the accurate, most relevant emerging techniques available and in vitro assays allow them to understand their strengths and limitations. This review could be a pioneer reference guide for the development of logical algorithmic approaches for new drugs and vaccine strategies against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Técnicas de Cultura de Células , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes
5.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1732132

RESUMO

The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/química , Internalização do Vírus/efeitos dos fármacos , Actinobacteria/química , Actinobacteria/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , COVID-19/virologia , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
6.
Chem Pharm Bull (Tokyo) ; 70(3): 199-201, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1714684

RESUMO

MS is a powerful methodology for chemical screening to directly quantify substrates and products of enzymes, but its low throughput has been an issue. Recently, an acoustic liquid-handling apparatus (Echo®) used for rapid nano-dispensing has been coupled to a high-sensitivity mass spectrometer to create the Echo® MS system, and we applied this system to screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease inhibitors. Primary screening of 32033 chemical samples was completed in 12 h. Among the hits showing selective, dose-dependent 3CL-inhibitory activity, 8 compounds showed antiviral activity in cell-based assay.


Assuntos
Tratamento Farmacológico da COVID-19 , Inibidores de Proteases , Acústica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
7.
Front Endocrinol (Lausanne) ; 12: 802447, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1699427

RESUMO

Coronavirus disease 2019 (COVID-19) is a serious epidemic, characterized by potential mutation and can bring about poor vaccine efficiency. It is evidenced that patients with malignancies, including prostate cancer (PC), may be highly vulnerable to the SARS-CoV-2 infection. Currently, there are no existing drugs that can cure PC and COVID-19. Luteolin can potentially be employed for COVID-19 treatment and serve as a potent anticancer agent. Our present study was conducted to discover the possible drug target and curative mechanism of luteolin to serve as treatment for PC and COVID-19. The differential gene expression of PC cases was determined via RNA sequencing. The application of network pharmacology and molecular docking aimed to exhibit the drug targets and pharmacological mechanisms of luteolin. In this study, we found the top 20 up- and downregulated gene expressions in PC patients. Enrichment data demonstrated anti-inflammatory effects, where improvement of metabolism and enhancement of immunity were the main functions and mechanism of luteolin in treating PC and COVID-19, characterized by associated signaling pathways. Additional core drug targets, including MPO and FOS genes, were computationally identified accordingly. In conclusion, luteolin may be a promising treatment for PC and COVID-19 based on bioinformatics findings, prior to future clinical validation and application.


Assuntos
Tratamento Farmacológico da COVID-19 , Descoberta de Drogas/métodos , Luteolina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , COVID-19/patologia , Biologia Computacional/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Luteolina/farmacologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia
8.
Bioprocess Biosyst Eng ; 45(3): 503-514, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1627214

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had severe consequences for health and the global economy. To control the transmission, there is an urgent demand for early diagnosis and treatment in the general population. In the present study, an automatic system for SARS-CoV-2 diagnosis is designed and built to deliver high specification, high sensitivity, and high throughput with minimal workforce involvement. The system, set up with cross-priming amplification (CPA) rather than conventional reverse transcription-polymerase chain reaction (RT-PCR), was evaluated using more than 1000 real-world samples for direct comparison. This fully automated robotic system performed SARS-CoV-2 nucleic acid-based diagnosis with 192 samples in under 180 min at 100 copies per reaction in a "specimen in data out" manner. This throughput translates to a daily screening capacity of 800-1000 in an assembly-line manner with limited workforce involvement. The sensitivity of this device could be further improved using a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based assay, which opens the door to mixed samples, potentially include SARS-CoV-2 variants screening in extensively scaled testing for fighting COVID-19.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Algoritmos , Engenharia Biomédica/instrumentação , Engenharia Biomédica/métodos , Engenharia Biomédica/estatística & dados numéricos , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Humanos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , Pandemias , Robótica/instrumentação , Robótica/métodos , Robótica/estatística & dados numéricos , SARS-CoV-2/genética , Sensibilidade e Especificidade , Análise de Sistemas
9.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: covidwho-1580695

RESUMO

Since December 2019, the new SARS-CoV-2-related COVID-19 disease has caused a global pandemic and shut down the public life worldwide. Several proteins have emerged as potential therapeutic targets for drug development, and we sought out to review the commercially available and marketed SARS-CoV-2-targeted libraries ready for high-throughput virtual screening (HTVS). We evaluated the SARS-CoV-2-targeted, protease-inhibitor-focused and protein-protein-interaction-inhibitor-focused libraries to gain a better understanding of how these libraries were designed. The most common were ligand- and structure-based approaches, along with various filtering steps, using molecular descriptors. Often, these methods were combined to obtain the final library. We recognized the abundance of targeted libraries offered and complimented by the inclusion of analytical data; however, serious concerns had to be raised. Namely, vendors lack the information on the library design and the references to the primary literature. Few references to active compounds were also provided when using the ligand-based design and usually only protein classes or a general panel of targets were listed, along with a general reference to the methods, such as molecular docking for the structure-based design. No receptor data, docking protocols or even references to the applied molecular docking software (or other HTVS software), and no pharmacophore or filter design details were given. No detailed functional group or chemical space analyses were reported, and no specific orientation of the libraries toward the design of covalent or noncovalent inhibitors could be observed. All libraries contained pan-assay interference compounds (PAINS), rapid elimination of swill compounds (REOS) and aggregators, as well as focused on the drug-like model, with the majority of compounds possessing their molecular mass around 500 g/mol. These facts do not bode well for the use of the reviewed libraries in drug design and lend themselves to commercial drug companies to focus on and improve.


Assuntos
Antivirais/química , Desenho de Fármacos/métodos , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteases/química , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , Bibliotecas de Moléculas Pequenas/química , Bases de Dados de Compostos Químicos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , SARS-CoV-2/metabolismo
10.
Emerg Microbes Infect ; 11(1): 250-259, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1585240

RESUMO

Testing and vaccination have been major components of the strategy for combating the ongoing COVID-19 pandemic. In this study, we have developed a quantitative anti-SARS-CoV-2 spike (S1) IgG antibody assay using a fingerstick dried blood sample. We evaluated the feasibility of using this high-throughput and quantitative anti-SARS-CoV-2 spike (S1) IgG antibody testing assay in vaccinated individuals. Fingerstick blood samples were collected and analyzed from 137 volunteers before and after receiving the Moderna or Pfizer mRNA vaccine. Anti-SARS-CoV-2 S1 IgG antibody could not be detected within the first 7 days after receiving the first vaccine dose, however, the assay reliably detected antibodies from day 14 onwards. In addition, no anti-SARS-CoV-2 nucleocapsid (N) protein IgG antibody was detected in any of the vaccinated or healthy participants, indicating that the anti-SARS-CoV-2 S1 IgG assay is specific for the mRNA vaccine-induced antibodies. The S1 IgG levels detected in fingerstick samples correlated with the levels found in venous blood plasma samples and with the efficacy of venous blood plasma samples in the plaque reduction neutralization test (PRNT). The assay displayed a limit of quantification (LOQ) of 0.59 µg/mL and was found to be linear in the range of 0.51-1000 µg/mL. Finally, its clinical performance displayed a Positive Percent Agreement (PPA) of 100% (95% CI: 0.89-1.00) and a Negative Percent Agreement (NPA) of 100% (95% CI: 0.93-1.00). In summary, the assay described here represents a sensitive, precise, accurate, and simple method for the quantitative detection and monitoring of post-vaccination anti-SARS-CoV-2 spike IgG responses.


Assuntos
Teste Sorológico para COVID-19/métodos , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Ensaios de Triagem em Larga Escala/métodos , Imunoensaio/métodos , SARS-CoV-2/imunologia , Manejo de Espécimes/métodos , Anticorpos Antivirais/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Glicoproteína da Espícula de Coronavírus , Vacinação
11.
Biochem Biophys Res Commun ; 591: 118-123, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1588231

RESUMO

3-chyomotrypsin like protease (3CLpro) has been considered as a promising target for developing anti-SARS-CoV-2 drugs. Herein, about 6000 compounds were analyzed by high-throughput screening using enzyme activity model, and Merbromin, an antibacterial agent, was identified as a potent inhibitor of 3CLpro. Merbromin strongly inhibited the proteolytic activity of 3CLpro but not the other three proteases Proteinase K, Trypsin and Papain. Michaelis-Menten kinetic analysis showed that Merbromin was a mixed-type inhibitor of 3CLpro, due to its ability of increasing the KM and decreasing the Kcat of 3CLpro. The binding assays and molecular docking suggested that 3CLpro possessed two binding sites for Merbromin. Consistently, Merbromin showed a weak binding to the other three proteases. Together, these findings demonstrated that Merbromin is a selective inhibitor of 3CLpro and provided a scaffold to design effective inhibitors of SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Merbromina/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Sítios de Ligação , COVID-19/prevenção & controle , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Cinética , Merbromina/química , Merbromina/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/enzimologia , SARS-CoV-2/fisiologia , Ressonância de Plasmônio de Superfície/métodos
12.
SLAS Discov ; 27(2): 86-94, 2022 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1586501

RESUMO

Effective small molecule therapies to combat the SARS-CoV-2 infection are still lacking as the COVID-19 pandemic continues globally. High throughput screening assays are needed for lead discovery and optimization of small molecule SARS-CoV-2 inhibitors. In this work, we have applied viral pseudotyping to establish a cell-based SARS-CoV-2 entry assay. Here, the pseudotyped particles (PP) contain SARS-CoV-2 spike in a membrane enveloping both the murine leukemia virus (MLV) gag-pol polyprotein and luciferase reporter RNA. Upon addition of PP to HEK293-ACE2 cells, the SARS-CoV-2 spike protein binds to the ACE2 receptor on the cell surface, resulting in priming by host proteases to trigger endocytosis of these particles, and membrane fusion between the particle envelope and the cell membrane. The internalized luciferase reporter gene is then expressed in cells, resulting in a luminescent readout as a surrogate for spike-mediated entry into cells. This SARS-CoV-2 PP entry assay can be executed in a biosafety level 2 containment lab for high throughput screening. From a collection of 5,158 approved drugs and drug candidates, our screening efforts identified 7 active compounds that inhibited the SARS-CoV-2-S PP entry. Of these seven, six compounds were active against live replicating SARS-CoV-2 virus in a cytopathic effect assay. Our results demonstrated the utility of this assay in the discovery and development of SARS-CoV-2 entry inhibitors as well as the mechanistic study of anti-SARS-CoV-2 compounds. Additionally, particles pseudotyped with spike proteins from SARS-CoV-2 B.1.1.7 and B.1.351 variants were prepared and used to evaluate the therapeutic effects of viral entry inhibitors.


Assuntos
Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Células HEK293 , Humanos
13.
ACS Chem Biol ; 17(1): 17-23, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1569207

RESUMO

Macrodomains are a class of conserved ADP-ribosylhydrolases expressed by viruses of pandemic concern, including coronaviruses and alphaviruses. Viral macrodomains are critical for replication and virus-induced pathogenesis; therefore, these enzymes are a promising target for antiviral therapy. However, no potent or selective viral macrodomain inhibitors currently exist, in part due to the lack of a high-throughput assay for this class of enzymes. Here we developed a high-throughput ADP-ribosylhydrolase assay using the SARS-CoV-2 macrodomain Mac1. We performed a pilot screen that identified dasatinib and dihydralazine as ADP-ribosylhydrolase inhibitors. Importantly, dasatinib inhibits SARS-CoV-2 and MERS-CoV Mac1 but not the closest human homologue, MacroD2. Our study demonstrates the feasibility of identifying selective inhibitors based on ADP-ribosylhydrolase activity, paving the way for the screening of large compound libraries to identify improved macrodomain inhibitors and to explore their potential as antiviral therapies for SARS-CoV-2 and future viral threats.


Assuntos
Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , N-Glicosil Hidrolases/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Dasatinibe/farmacologia , Domínios Proteicos , SARS-CoV-2/enzimologia
14.
Sci Rep ; 11(1): 23260, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1545651

RESUMO

An overreliance on commercial, kit-based RNA extraction in the molecular diagnoses of infectious disease presents a challenge in the event of supply chain disruptions and can potentially hinder testing capacity in times of need. In this study, we adapted a well-established, robust TRIzol-based RNA extraction protocol into a high-throughput format through miniaturization and automation. The workflow was validated by RT-qPCR assay for SARS-CoV-2 detection to illustrate its scalability without interference to downstream diagnostic sensitivity and accuracy. This semi-automated, kit-free approach offers a versatile alternative to prevailing integrated solid-phase RNA extraction proprietary systems, with the added advantage of improved cost-effectiveness for high volume acquisition of quality RNA whether for use in clinical diagnoses or for diverse molecular applications.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Técnicas de Diagnóstico Molecular/métodos , RNA Viral/análise , Curva ROC
15.
Viruses ; 13(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1534242

RESUMO

CRISPR/Cas is a powerful tool for studying the role of genes in viral infections. The invention of CRISPR screening technologies has made it possible to untangle complex interactions between the host and viral agents. Moreover, whole-genome and pathway-specific CRISPR screens have facilitated identification of novel drug candidates for treating viral infections. In this review, we highlight recent developments in the fields of CRISPR/Cas with a focus on the use of CRISPR screens for studying viral infections and identifying new candidate genes to aid development of antivirals.


Assuntos
Sistemas CRISPR-Cas , Técnicas Genéticas , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , Viroses/genética , Viroses/virologia , Vírus/genética , Descoberta de Drogas , Interações entre Hospedeiro e Microrganismos , Humanos
16.
J Mater Chem B ; 9(42): 8851-8861, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1526111

RESUMO

Nanomaterial-based optical techniques for biomarker detection have garnered tremendous attention from the nanofabrication community due to their high precision and enhanced limit of detection (LoD) features. These nanomaterials are highly responsive to local refractive index (RI) fluctuations, and their RI unit sensitivity can be tuned by varying the chemical composition, geometry, and dimensions of the utilized nanostructures. To improve the sensitivity and LoD values of these nanomaterials, it is common to increase both dimensions and aspect ratios of the fabricated nanostructures. However, limited by the complexity, prolonged duration, and elevated costs of the available nanofabrication techniques, mass production of these nanostructures remains challenging. To address not only high accuracy, but also speed and production effectiveness in these nanostructures' fabrication, our work reports, for the first time, a fast, high-throughput, and cost-effective nanofabrication protocol for routine manufacturing of polymer-based nanostructures with high sensitivity and calculated LoD in the pM range by utilizing anodized aluminum oxide (AAO) membranes as templates. Specifically, our developed platform consists of arrays of nearly uniform polystyrene nanopillars with an average diameter of ∼185 nm and aspect ratio of ∼11. We demonstrate that these nanostructures can be produced at a high speed and a notably low price, and that they can be efficiently applied for biosensing purposes after being coated with aluminum-doped silver (Ag/Al) thin films. Our platform successfully detected very low concentrations of human C-reactive protein (hCRP) and SARS-CoV-2 spike protein biomarkers in human plasma samples with LoDs of 11 and 5 pM, respectively. These results open new opportunities for day-to-day fabrication of high aspect ratio arrays of nanopillars that can be used as a base for nanoplasmonic sensors with competitive LoD values. This, in turn, contributes to the development of point-of-care devices and further improvement of the existing nanofabrication techniques, thereby enriching the fields of pharmacology, clinical analysis, and diagnostics.


Assuntos
Óxido de Alumínio/química , Biomarcadores/sangue , Ensaios de Triagem em Larga Escala/métodos , Nanoestruturas/química , Prata/química , Técnicas Biossensoriais , Proteína C-Reativa/análise , COVID-19/diagnóstico , COVID-19/virologia , Dimetilpolisiloxanos/química , Humanos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Poliestirenos/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/sangue
17.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1512374

RESUMO

Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and nucleotide analogue production in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening method for NKs is of great importance. Here, we report on the validation of a well-known luciferase-based assay for the detection of NK activity in a 96-well plate format. The assay was semi-automated using a liquid handling robot. Good linearity was demonstrated (r² > 0.98) in the range of 0-500 µM ATP, and it was shown that alternative phosphate donors like dATP or CTP were also accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplarily used for the comparison of the substrate spectra of four NKs using 20 (8 natural, 12 modified) substrates. The screening results correlated well with literature data, and additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.


Assuntos
Nucleosídeos/metabolismo , Fosfotransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Drosophila melanogaster/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Luciferases/metabolismo , Fosforilação/fisiologia , Especificidade por Substrato
18.
Sci Rep ; 11(1): 20143, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1462040

RESUMO

Rapid, high-throughput diagnostic tests are essential to decelerate the spread of the novel coronavirus disease 2019 (COVID-19) pandemic. While RT-PCR tests performed in centralized laboratories remain the gold standard, rapid point-of-care antigen tests might provide faster results. However, they are associated with markedly reduced sensitivity. Bedside breath gas analysis of volatile organic compounds detected by ion mobility spectrometry (IMS) may enable a quick and sensitive point-of-care testing alternative. In this proof-of-concept study, we investigated whether gas analysis by IMS can discriminate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from other respiratory viruses in an experimental set-up. Repeated gas analyses of air samples collected from the headspace of virus-infected in vitro cultures were performed for 5 days. A three-step decision tree using the intensities of four spectrometry peaks correlating to unidentified volatile organic compounds allowed the correct classification of SARS-CoV-2, human coronavirus-NL63, and influenza A virus H1N1 without misassignment when the calculation was performed with data 3 days post infection. The forward selection assignment model allowed the identification of SARS-CoV-2 with high sensitivity and specificity, with only one of 231 measurements (0.43%) being misclassified. Thus, volatile organic compound analysis by IMS allows highly accurate differentiation of SARS-CoV-2 from other respiratory viruses in an experimental set-up, supporting further research and evaluation in clinical studies.


Assuntos
Antígenos Virais/isolamento & purificação , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Testes Imediatos , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/imunologia , COVID-19/virologia , Teste Sorológico para COVID-19/instrumentação , Chlorocebus aethiops , Coronavirus Humano NL63/imunologia , Coronavirus Humano NL63/isolamento & purificação , Diagnóstico Diferencial , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Espectrometria de Mobilidade Iônica , Estudo de Prova de Conceito , SARS-CoV-2/imunologia , Células Vero
19.
Elife ; 102021 10 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1456505

RESUMO

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.


To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a 'polymerase' protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Nucleotídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Linhagem Celular , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Modelos Teóricos , Nucleotídeos/metabolismo , RNA Viral , SARS-CoV-2/enzimologia , Processos Estocásticos , Replicação Viral/efeitos dos fármacos
20.
Microbiol Spectr ; 9(2): e0050621, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1455679

RESUMO

Emerging SARS-CoV-2 (SC-2) variants with increased infectivity and vaccine resistance are of major concern. Rapid identification of such variants is important for the public health decision making and to provide valuable data for epidemiological and policy decision making. We developed a multiplex reverse transcriptase quantitative PCR (RT-qPCR) assay that can specifically identify and differentiate between the emerging B.1.1.7 and B.1.351 SC-2 variants. In a single assay, we combined four reactions-one that detects SC-2 RNA independently of the strain, one that detects the D3L mutation, which is specific to variant B.1.1.7, one that detects the 242 to 244 deletion, which is specific to variant B.1.351, and the fourth reaction, which identifies the human RNAseP gene, serving as an endogenous control for RNA extraction integrity. We show that the strain-specific reactions target mutations that are strongly associated with the target variants and not with other major known variants. The assay's specificity was tested against a panel of respiratory pathogens (n = 16), showing high specificity toward SC-2 RNA. The assay's sensitivity was assessed using both in vitro transcribed RNA and clinical samples and was determined to be between 20 and 40 viral RNA copies per reaction. The assay performance was corroborated with Sanger and whole-genome sequencing, showing complete agreement with the sequencing results. The new assay is currently implemented in the routine diagnostic work at the Central Virology Laboratory, and may be used in other laboratories to facilitate the diagnosis of these major worldwide-circulating SC-2 variants. IMPORTANCE This study describes the design and utilization of a multiplex reverse transcriptase quantitative PCR (RT-qPCR) to identify SARS-COV-2 (SC2) RNA in general and, specifically, to detect whether it is of lineage B.1.1.7 or B.1.351. Implementation of this method in diagnostic and research laboratories worldwide may help the efforts to contain the COVID-19 pandemic. The method can be easily scaled up and be used in high-throughput laboratories, as well as small ones. In addition to immediate help in diagnostic efforts, this method may also help in epidemiological studies focused on the spread of emerging SC-2 lineages.


Assuntos
COVID-19/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/métodos , SARS-CoV-2/classificação , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral/genética , Humanos , Israel/epidemiologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA